173 research outputs found

    Phylogenetic assessment of alignments reveals neglected tree signal in gaps

    Get PDF
    Tree-based tests of alignment methods enable the evaluation of the effect of gap placement on the inference of phylogenetic relationships

    Alignments with non-overlapping moves, inversions and tandem duplications in O ( n 4) time

    Get PDF
    Sequence alignment is a central problem in bioinformatics. The classical dynamic programming algorithm aligns two sequences by optimizing over possible insertions, deletions and substitutions. However, other evolutionary events can be observed, such as inversions, tandem duplications or moves (transpositions). It has been established that the extension of the problem to move operations is NP-complete. Previous work has shown that an extension restricted to non-overlapping inversions can be solved in O(n 3) with a restricted scoring scheme. In this paper, we show that the alignment problem extended to non-overlapping moves can be solved in O(n 5) for general scoring schemes, O(n 4log n) for concave scoring schemes and O(n 4) for restricted scoring schemes. Furthermore, we show that the alignment problem extended to non-overlapping moves, inversions and tandem duplications can be solved with the same time complexities. Finally, an example of an alignment with non-overlapping moves is provide

    Covariance of maximum likelihood evolutionary distances between sequences aligned pairwise

    Get PDF
    The estimation of a distance between two biological sequences is a fundamental process in molecular evolution. It is usually performed by maximum likelihood (ML) on characters aligned either pairwise or jointly in a multiple sequence alignment (MSA). Estimators for the covariance of pairs from an MSA are known, but we are not aware of any solution for cases of pairs aligned independently. In large-scale analyses, it may be too costly to compute MSAs every time distances must be compared, and therefore a covariance estimator for distances estimated from pairs aligned independently is desirable. Knowledge of covariances improves any process that compares or combines distances, such as in generalized least-squares phylogenetic tree building, orthology inference, or lateral gene transfer detection

    The what, where, how and why of gene ontology—a primer for bioinformaticians

    Get PDF
    With high-throughput technologies providing vast amounts of data, it has become more important to provide systematic, quality annotations. The Gene Ontology (GO) project is the largest resource for cataloguing gene function. Nonetheless, its use is not yet ubiquitous and is still fraught with pitfalls. In this review, we provide a short primer to the GO for bioinformaticians. We summarize important aspects of the structure of the ontology, describe sources and types of functional annotations, survey measures of GO annotation similarity, review typical uses of GO and discuss other important considerations pertaining to the use of GO in bioinformatics applications

    OMA Browser—Exploring orthologous relations across 352 complete genomes

    Get PDF
    Motivation: Inference of the evolutionary relation between proteins, in particular the identification of orthologs, is a central problem in comparative genomics. Several large-scale efforts with various methodologies and scope tackle this problem, including OMA (the Orthologous MAtrix project). Results: Based on the results of the OMA project, we introduce here the OMA Browser, a web-based tool allowing the exploration of orthologous relations over 352 complete genomes. Orthologs can be viewed as groups across species, but also at the level of sequence pairs, allowing the distinction among one-to-one, one-to-many and many-to-many orthologs. Availability: http://omabrowser.org Contact: [email protected]

    SWPS3 – fast multi-threaded vectorized Smith-Waterman for IBM Cell/B.E. and ×86/SSE2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We present swps3, a vectorized implementation of the Smith-Waterman local alignment algorithm optimized for both the Cell/BE and ×86 architectures. The paper describes swps3 and compares its performances with several other implementations.</p> <p>Findings</p> <p>Our benchmarking results show that swps3 is currently the fastest implementation of a vectorized Smith-Waterman on the Cell/BE, outperforming the only other known implementation by a factor of at least 4: on a Playstation 3, it achieves up to 8.0 billion cell-updates per second (GCUPS). Using the SSE2 instruction set, a quad-core Intel Pentium can reach 15.7 GCUPS. We also show that swps3 on this CPU is faster than a recent GPU implementation. Finally, we note that under some circumstances, alignments are computed at roughly the same speed as BLAST, a heuristic method.</p> <p>Conclusion</p> <p>The Cell/BE can be a powerful platform to align biological sequences. Besides, the performance gap between exact and heuristic methods has almost disappeared, especially for long protein sequences.</p

    Scalable phylogenetic profiling using MinHash uncovers likely eukaryotic sexual reproduction genes

    Get PDF
    Phylogenetic profiling is a computational method to predict genes involved in the same biological process by identifying protein families which tend to be jointly lost or retained across the tree of life. Phylogenetic profiling has customarily been more widely used with prokaryotes than eukaryotes, because the method is thought to require many diverse genomes. There are now many eukaryotic genomes available, but these are considerably larger, and typical phylogenetic profiling methods require at least quadratic time as a function of the number of genes. We introduce a fast, scalable phylogenetic profiling approach entitled HogProf, which leverages hierarchical orthologous groups for the construction of large profiles and locality-sensitive hashing for efficient retrieval of similar profiles. We show that the approach outperforms Enhanced Phylogenetic Tree, a phylogeny-based method, and use the tool to reconstruct networks and query for interactors of the kinetochore complex as well as conserved proteins involved in sexual reproduction: Hap2, Spo11 and Gex1. HogProf enables large-scale phylogenetic profiling across the three domains of life, and will be useful to predict biological pathways among the hundreds of thousands of eukaryotic species that will become available in the coming few years. HogProf is available at https://github.com/DessimozLab/HogProf

    Survey of Branch Support Methods Demonstrates Accuracy, Power, and Robustness of Fast Likelihood-based Approximation Schemes

    Get PDF
    Phylogenetic inference and evaluating support for inferred relationships is at the core of many studies testing evolutionary hypotheses. Despite the popularity of nonparametric bootstrap frequencies and Bayesian posterior probabilities, the interpretation of these measures of tree branch support remains a source of discussion. Furthermore, both methods are computationally expensive and become prohibitive for large data sets. Recent fast approximate likelihood-based measures of branch supports (approximate likelihood ratio test [aLRT] and Shimodaira-Hasegawa [SH]-aLRT) provide a compelling alternative to these slower conventional methods, offering not only speed advantages but also excellent levels of accuracy and power. Here we propose an additional method: a Bayesian-like transformation of aLRT (aBayes). Considering both probabilistic and frequentist frameworks, we compare the performance of the three fast likelihood-based methods with the standard bootstrap (SBS), the Bayesian approach, and the recently introduced rapid bootstrap. Our simulations and real data analyses show that with moderate model violations, all tests are sufficiently accurate, but aLRT and aBayes offer the highest statistical power and are very fast. With severe model violations aLRT, aBayes and Bayesian posteriors can produce elevated false-positive rates. With data sets for which such violation can be detected, we recommend using SH-aLRT, the nonparametric version of aLRT based on a procedure similar to the Shimodaira-Hasegawa tree selection. In general, the SBS seems to be excessively conservative and is much slower than our approximate likelihood-based method

    OMA 2011: orthology inference among 1000 complete genomes

    Get PDF
    OMA (Orthologous MAtrix) is a database that identifies orthologs among publicly available, complete genomes. Initiated in 2004, the project is at its 11th release. It now includes 1000 genomes, making it one of the largest resources of its kind. Here, we describe recent developments in terms of species covered; the algorithmic pipeline—in particular regarding the treatment of alternative splicing, and new features of the web (OMA Browser) and programming interface (SOAP API). In the second part, we review the various representations provided by OMA and their typical applications. The database is publicly accessible at http://omabrowser.or
    corecore